Solar module yield gains from structured ribbons

Our new paper investigates the impact of angular irradiance distributions on coupling gains and energy yield of cell interconnection designs in silicon solar modules in tracking and fixed systems

Recent Publications

Solar module yield gains from structured ribbons

Solar module yield gains from structured ribbons

We compare the effects of planar & triangular ribbons, light redirecting films, wires and a new proposed pentagonal ribbon geometry, in fixed optimal inclination, building-integrated (façade), and single-axis tracking installation scenarios of modules in portrait and landscape orientation. We conclude that to fully evaluate the effectiveness of a specific ribbon design, the annual energy yield must consider the angular irradiance distribution and weather conditions at a specific location, the installation scenario, and the module orientation.

Laser contacts from POx/Al2O3 passivation stacks

Laser contacts from POx/Al2O3 passivation stacks

• n+ laser doping demonstrated from POx/Al2O3 passivation stacks on silicon. • Metallised J0 of 540 fA cm−2 for n+ laser-doped region with Rsheet of 39.5 Ω/□. • Consistent with values for POCl3 furnace diffusions, indicating minimal defects. • Same POx/Al2O3 stack provides J0 of 2.5 fA cm−2 on undiffused planar surfaces. • 23.6% simulated efficiency for laser-doped n-type PERL cell based on POx/Al2O3.

Destructive Reverse Bias in Perovskite Tandem Modules

Destructive Reverse Bias in Perovskite Tandem Modules

We demonstrate how perovskite hysteresis can result in permanent reductions in power output in perovskite/silicon tandem modules—including irreversible hotspot-induced damage—from only brief periods of shading.

View All

One-Minute Typical Meteorological Year Data for Australia - Corresponding data can be downloaded here for free.

Access

Top